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Abstract
At pressureratioslower thanthedesignvalue,
convergent-divergent (C-D) nozzlesoften un-
dergo a flow resonanceaccompaniedby the
emissionof acoustictones.Thephenomenon,
driven by the unsteadyshock within the di-
vergentsectionof the nozzle,hasbeenstud-
ied experimentallyby Zamanet al[1]. In this
paper, thespace-timeconservationelementso-
lution element(CE/SE) method[2, 3, 4] is
employed to numericallyinvestigatethe phe-
nomenon.Thecomputationsareperformedfor
a given nozzlegeometryfor several different
pressureratios. Sustained‘limit cycle’ oscil-
lations are encounteredin all cases. The os-
cillation frequencies,their variationwith pres-
sureratio includinga ‘stagejump’, agreewell
with the experimentalresults. The unsteady
flow dataconfirmthatstage1 of theresonance
(fundamental)involvesa one-quarterstanding
wave while stage2 (third harmonic)involves
a three-quarterstandingwavewithin thediver-
gentsectionof thenozzle.Detailsof theshock
motion, and the flow andnearacousticfield,
aredocumentedfor onecaseeachof stages1
and2.

1 Intr oduction
This paperconcernsan aeroacousticresonanceoften

encounteredwith convergent-divergentnozzleswhenrun
near ‘transonic’ conditions. The resonanceis usually
accompaniedby the emissionof intenseacoustictones.
While a casualobserver may easilyconfuseit with the
well-known ‘screechtone’, it hasbeenshown to bedif-
ferent in characteras well as origin. The frequency�
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of the tone increaseswith increasingplenumpressure.
Thefrequency variationmayinvolvea stagingbehavior,
i.e., an abruptjump in frequency. While odd harmonic
stagestake place at lower pressures,the fundamental
takesplaceover a wide rangeof higherpressures.De-
pendingon nozzlegeometry, the fundamentalhasbeen
foundto persistto pressureratiosashigh as5. Thephe-
nomenonhasbeenidentifiedandstudiedexperimentally
by Zamanetal [1]. For adiscussionof background,tech-
nologicalrelevance,andpertinentpastwork from thelit-
erature,the readeris referredto the cited reference.A
discussionof numericalworksfrom theliteratureappar-
ently capturingthe samephenomenon,andthe implica-
tion of thoseresults,will be deferredto the concluding
remarksin Section5.

During thecourseof theexperimentalstudya numer-
ical studywasinitiatedto complementtheinvestigation.
The ‘CE/SE’ method,to be elaboratedshortly, wasem-
ployed becauseof its pastsuccesswith flows involving
shocksand acousticwaves [5]. The calculationswere
first performedfor a nozzlegeometryandpressureratio
thatcorrespondedto anexperimentaltestcondition.The
resultwasencouragingin thattheflow notonly exhibited
a quasi-periodicitybut the frequency wasalsoin agree-
mentwith the experimentalresult. Subsequentcalcula-
tions at two other pressurescapturedthe right trend in
thefrequency variationaswell asthestage-jump.These
promising resultsprompteda further study. This was
deemedwell-justified not only to shedfurther light on
themechanismof thephenomenonbut alsoto gaincon-
fidencein theCFDmethodology.

The ‘Space-Time Conservation-Element and
Solution-Element(CE/SE)Method’ [2,3,4] wasusedas
a numericalplatform in the study. As demonstratedin
previous papers,the CE/SE methodis well suited for
computingwavesin compressibleshearflows[5] aswell
asvorticity/shockinteractions[6], both beingpertinent
in the phenomenonunderconsideration.Furthermore,
based on the novel CE/SE non-reflecting boundary
conditions (NRBC), it is expected that a small near
field computationaldomain would be sufficient and
the simulationcould be focusedon the region of most

1
AmericanInstituteof AeronauticsandAstronautics



importancein theresonance.
The objective of this paperis to describethe key re-

sults of the numerical study. The paper is arranged
as follows. The axisymmetricCE/SEschemewith an
unstructured-gridis discussedin Section2. The initial
and boundaryconditionsas well as the CE/SENRBC
arediscussedin section3. Thenumericalresultsarepre-
sentedandcomparedwith experimentalresultsin Sec-
tion 4, furtherdiscussionandsummaryaregivenin Sec-
tion 5.

2 The Unstructured Axisymmetric CE/SE
Euler and Navier -Stokes Solver s

In thissectiontheCE/SEnumericalschemeis summa-
rized including (a) the Navier-StokesCE/SEsolver, (b)
the unstructuredgrid used,and(c) the treatmentof the
sourcetermandthe2-D axisymmetricapproximationof
LES (largeeddysimulation)appliedto thejet flow. The
basicCE/SEprinciple anddetailsof the Euler schemes
canbefoundin thecitedoriginalpapers[2, 3, 4].

2.1 Conser vation Form of the Unstead y
Axisymmetric Navier -Stokes Equations

In general,theCE/SEmethodsystematicallysolvesaset
of integral equationsderived directly from the physical
conservation laws, andhencenaturallycapturesshocks
and other discontinuitiesin the flow. Both dependent
variablesandtheir derivativesaresolved for simultane-
ously and, consequently, the flow vorticity can be ob-
tained without reduction in accuracy. Non-reflecting
boundaryconditions (NRBCs) are also easily imple-
mentedbecauseof theflux-conservationformulation.

Consideradimensionlessconservationform of theun-
steadyaxisymmetricNavier-Stokesequationsof a per-
fect gas.Let � , � , � , � , and � bethedensity, streamwise
velocity component,radial velocity component,static
pressure,and constantspecificheat ratio, respectively.
The axisymmetricNavier-Stokesequationsthencanbe
written in thefollowing vectorform:	�

�����������������

(1)

where � , ��� � , and ! arethestreamwiseandradialco-
ordinatesandtime, respectively. The conservative flow
variablevector

	
andtheflux vectorsin thestreamwise

andradialdirections,
�

and
�
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Theflux vectorsarefurthersplit into inviscidandviscous
fluxes: K � KML @ KON �QP7�RP L @ P N �
wherethe inviscid fluxes are the sameas in the Euler
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where� � � � � � � � � � � � � � � arerespectively the �6@ and�
@
flow velocity componentsand their derivatives. They
can be written in terms of the conservative variables& ' �Q& ) �Q&;+

and
&*,

.
zj{

is thePrandtlnumber, and
m

the
viscosity. Thevelocitydivergenceo�p�q � � �f� � �f� ��<v�wJ

The right handsourceterm
�

is the sameas in the
axisymmetricEulerequations[7]:
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J
By considering =Z� � � � !�D as coordinatesof a three-

dimensionalEuclideanspace� + andusingGauss’diver-
gencetheorem,it followsthatEq.(1) is equivalentto the
following integralconservationlaw:�>���������T�T�

d� �c� � � � d� � �7� B � H � Y ����� (2)

where �M=��yD denotesthe surfacearounda volume � in� + and
� � � = 4 � � 8 � �s& � D .
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2.2 Unstructured Grid for CE/SE
The CE/SEschemeis naturallyadaptedto unstructured
triangulargrid. The unstructuredversionof the CE/SE
schemecan be briefly describedusing Fig. 1. Here,�������

is a typical triangularcell centeredat   , and¡¢� � �£4 are the centersof the neighboringtriangular
cells wherethe flow dataat the previous time stepare
given. Each triangle centerand its three neighboring
trianglecentersform threecylindrical quadrilateralcon-
servation elementsor

� � s, asshown in Fig. 1. In the
space-time� + space,(2) is appliedto thehexagoncylin-
der
� ¡ � � � 4 ( thevolume � ) thatconsistsof these3

quadrilateral
� � s. Thediscreteapproximationof (2) is

then � �����6� �c���
d � � �^= � � Dx¤I¥ '¦ �

(3)

for
�§� B � H � Y ��� , where

� �� � = 4y�� � 8 �� �Q&y�� D . The
right-handsideof (3), in general,is thevolume � times
the ‘source’ term evaluatedat an appropriategaussian
quadraturenode. Here,the gaussianquadraturenodeis
the centerof the hexagon

� ¡ � � � 4 at the new time
level.

In the CE/SE scheme,the above flux conservation
relation (2) in space-timeis the only mechanismthat
transfersinformationbetweennodepoints. A conserva-
tion element

� � (here,quadrilateralcylinders)is thefi-
nite volumeto which (2) is applied. Discontinuitiesare
allowed to occur in the interior of a conservation ele-
ment. A solution element �*� associatedwith a grid
node (e.g.,

¡�� � �G4 in Fig. 1) is here a set of inter-
face planesin � + that passesthrough this node (e.g.¡ �g��¨ ¡ ¨ �£¡ �~�y¨ ¡ ¨ � � �~�y¨ � ¨ � � ���j¨ � ¨ �£© !xªvJ ).

At time level « , thesolutionvariables
	

,
	¢�

, and
	¬�

aregiven at thesethreenodes.We areto solve
	

,
	¢�

and
	¬�

at   ¨ at thenew time level « � B .
In principle,eachof the3

� � sprovides4 scalarequa-
tionswhen(2) is appliedto it. Therearetotally 12scalar
equationsfor the12scalarunknownsat   ¨ . Theproblem
is solvable. All the unknowns aresolved for basedon
theserelations.No extrapolations(interpolations)across
a stencilof cells areneededor allowed. But in reality,	

at the hexagoncenterat the new time level « � B is
first evaluatedfrom (3) and then by Taylor expansion,	

at the center   ¨ of triangle
�g�~�

can be obtained.
Consequently,

	 �
and
	 �

aresolvedwith thenecessary
numericaldissipationadded.Detailscanbefoundin [4].

An importantissueis how to accuratelycalculatethe
surfacefluxes of the �*� s. For this purpose,within a
givensolutionelement�;�A=d­ � «�D , where­ � « arethenode
index, andtime steprespectively, the flow variablesare
not only consideredcontinuousbut are also approxi-
matedby linearTaylor expansions:	 � =F� � � � !s®�­ � «�D �c	 ¤¦ � = 	¬� D ¤¦ =F�^@¯� ¦ D �

A
B

C

O
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hexagon cylinder AD BECFA − A’D’B’E’C’F ’A’  and
its 3 CEs, OADB−O’A ’D’B’, OBEC−O’B’E’C ’,   
OCFA − O’C’F’A’

time level n

time level n+1

Figure1: CE/SEunstructuredgrid
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where ­ is the nodeindex of
¡¢� � or

4
. The partial

derivativesof
�

and
�

canberelatedto thecorrespond-
ing derivativesof

	
by usingthechainrule,and

	�

can

be obtainedfrom (1). Now, the surfaceflux canbe cal-
culatedaccuratelyby first evaluatingthe flux vectorsat
thegeometricalcenterof thesurfacethroughtheTaylor
expansions(4-6). With unstructuredgrids, the CE/SE
procedureis simplifiedandmoreadaptedto complicated
geometry. Only a singlesetof meshpointsis neededas
comparedto the spatiallystaggeredmeshfor structured
grids and the time-marchingis completedin one step
ratherthantwo. Also, the simplenon-reflectingbound-
ary conditionsdescribedpreviously [5 - 8] still work
well with an unstructuredgrid. More detailsaboutthe
unstructuredCE/SEmethodcan be found in [4]. The
weighted²h@±³ CE/SEschemeis usedhere.

2.3 Treatment of the Sour ce Term
The treatmentis identical to the oneusedin [7] and is
briefly reiteratedhere. As the sourceterm

�´�µ� = 	 D
itself is a function of the unknown

	
at the new time

level, a local iterative procedureis neededto determine	
. The discretizedintegral equation(3) reducesto the

form 	 @ � = & D � ! �T	¬¶~� (7)
3
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where
	¢¶

is the local homogeneoussolution (i.e. the
solution for

�9� � locally). Note that
	¢¶

only de-
pendson thesolutionat theprevioustime step,i.e.

	 ¶
is obtainedusingexplicit formulas. A Newton iterative
procedureto determine

	
is then	 � S ¥ '

� �c	 � S � @]= |¸·| 	 DQ¹
' u · = 	

� S � D5@ 	¬¶ � �
whereº is theiterationnumberand

· = 	 D �T	 @ � = 	 D � !»J
Normally,

	
at the previous time stepis a goodinitial

guess¼
�b½e�

andtheproceduretakesabout2-3 iterations
to convergence.

2.4 Large Eddy Simulation (LES)
A simplifiedLES proceduresimilar to thoseusedin [9]
is adoptedhereto accountfor thestrongmomentumex-
changein the jet shearlayer outsidethe nozzle. In this
2-D approximationof LES,asimpleSmagorinsky’ssub-
grid scalemodelis usedfor theeddyviscosity:m 
 � = �O¾0� D ) =nH¿� S ¦ � S ¦ D '�ÀG) �
where � S ¦ � ') = | � S| � ¦ � | �

¦
| � S D �� � = � � � �>D '£ÀG) � � ¾ � �>JbB . Then
m¸
\��m

repalces
m

in theNavier-StokesCE/SEsolver.

3 Computational Domain, Initial and
Boundar y Conditions

As statedearlier, anaxisymmetric2-D CE/SENavier-
Stokes solver was used. It shouldbe notedthat ‘high
Reynoldsnumber’,‘inviscid’ calculationswerefirst per-
formedfor thenozzleinternalflow (that is,

m
wassetto

zero for the viscousflux termsin the governingequa-
tions,Section2). With a uniform flow at thenozzleinlet
andno-slipconditionon thewall, trunctionandotherer-
rors in the numericalprocessimposeda viscouseffect
andtherewasa boundarylayer growth dueto this ‘nu-
mericalviscosity’. Physicalviscositywaslater applied
to simulatedifferentReynoldsnumbers,asdiscussedat
the end of Section4. The 2-D approximationof LES
(Section2.4) wasappliedto the flow outsidethenozzle
in orderto properlysimulatethefreejet. Thecalculation
for thenozzle’sinternalflow shouldbedeemedmorerel-
evantin thepresentstudy.

The computeddomainstartedat the inlet of the con-
vergentsectionof the nozzleasshown in figure 2. The
domainextendedover a rectangularsubdomainoutside
the nozzle(21.5 inch in axial directionx 16 inch in ra-
dial direction;seefigure3). Thecomputationwasstarted
with the entireflow at restandwith the desiredplenum

2"

2.75"

.75"

1.5"

throat
dia.=.3"

.4"

C−D  nozzle

y=.75 −.45x**2 +.15x**3

straight line

Figure2: Geometryof theC-D nozzleandunstructured
grid

pressureappliedat theinlet boundary. A no-slipbound-
ary conditionwasimposedon the nozzlewall. For the
outer subdomain,ambient conditionswere applied at
the upstreaminflow boundary, non-reflective conditions
wereappliedat the upperanddownstreamboundaries,
while a mirror-imagereflective (symmetryaxis) condi-
tion wasappliedat thebottomboundary.

The geometryof the nozzlecanbe seenin figure 2.
Theinlet diameteris BaJÂÁIÃ . Thediametersat thenozzle’s
throat and exit are respectively

¡ 
 � �>J YaÃ and
¡�Ä[��>J � Ã . The throat is located HIÃ downstreamof the inlet.

Theconvergentpart follows a curvedcontour
{^�ÆÅ =F�wD

asnotedin thefigure,while thecontourof thedivergent
partis a straightline. Thegeometrycorrespondsto CaseÇ YIÈgH ¨ describedin [1].

In the experimentsit hasbeenshown that the origin
of theresonanceis internalto thenozzle(unlikescreech-
tones).Thus,thenumericalinvestigationconcentrateson
theinteriorflow of thenozzleandthenearfield. Further-
more,theflow andtheacousticfieldshavebeenfoundto
beof theaxisymmetricmodein theexperiments.Hence,
the axisymmetricCE/SEcodehasbeendeemedsuffi-
cient, at leastasa first attempt,in computingthe flow.
Theambientflow aroundthenozzleis assumedstation-
ary.

For convenience,² � BeÃ is chosenasthelengthscale.
(However, the throat-to-exit length, É � �>J�ÊIÁaÃ , is used
to nondimensionalizedatain someof the figuresto be
commensuratewith theexperiment.)Thecomputational
domainis a circular cylinder of H � J Áa² long and BeË¿² in
radius.Theunstructuredgrid is formedby cuttingarect-
angularcell into 4 triangles). Theserectangularcellsare
non-uniformandtheir numbersin the � and � directions
are 200 and 225, respectively. In a typical case,total
numberof trianglesis 114,000.The last 10 cells in the
streamwisedirectionhave exponentiallygrowing � size
andserveasa buffer zoneto ensureno numericalreflec-
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C−D
Nozzle

sym. axis
24.5a

16a

Computational Domai n & Grid

Figure3: Geometryof theentirecomputationaldomain
andunstructuredgrid.

tion from theoutflow boundary. Thegrid resolutionwas
deemedsufficientsinceacoarsergrid producedthesame
resultsasdiscussedshortly. TheCE/SEschemeis of the² - ³ type[3,4] with Ì � � and ³ � �>JÂÁ .
3.1 Initial Conditions
Thepressure� S andthespeedof sound² S in theambient
flow areusedto scalethedependentvariables.Initially,
theflow of theentiredomainis setat theambientcondi-
tions,i.e.,

� S � � � BaJ ��� � S � � � � S � � � � S � B¿J
Note that � Sg� B correspondsto a dimensionalpres-

sureof 14.4 psi in the experiments. Consequently, the
conservative flow variablesand their spatialderivatives
can be obtainedin an easyway. Initially, all spatial
derivativesaresetto zero.

3.2 Boundar y Conditions
At theinflow boundaryoutsidethenozzle,theconserva-
tiveflow variablesandtheir spatialderivativesarespeci-
fied to bethesameastheambientflow. Theinlet of the
C-D nozzleis connectedto the plenumwhich provides
a constantpressure� � �°Í to drive the flow. Accord-
ing to theexperimentalconditions,5 different �°Í values
(4, 8, 10, 15 and 20 psig) are chosenin the computa-
tion. The actualnon-dimensional� Í valuesarerespec-
tively BaJÂH¿Ê¿ÊaÊaÊIÎ � B � Á¿ÁaÁ¿ÁaÁIË � BaJ ËIÏ �I�a�I�¿�>� H>J � � B0Ë¿ËIË:Ê andH�J YaÎ¿ÎaÎ¿ÎaÎaÏ .

Following theexperimentalcondition,thetemperature
in theplenumis assumedto beequalto thatin theambi-
ent. By usingtheassumptionsof constanttotal enthalpy
andisentropicflow, it follows that the density � S at the
nozzleinlet is relatedto theambientpressure� S andden-
sity � S by �:Í � � Í� S � S J

Flow at thenozzleinlet is at rest:�°Í � �vÍ � ��J
No artificial forcing is imposedanywhere.As statedear-
lier, no slip conditionis appliedat the nozzlewalls. At
thesymmetryaxis, i.e. � � � , reflective boundarycon-
dition is applied.At thetop andoutflow boundaries,the
TypeI andTypeII CE/SEnon-reflectingboundarycon-
ditions asdescribedin the next subsectionare imposed
respectively.

3.3 Non-Reflecting Boundar y Conditions
In the CE/SE scheme,non-reflectingboundarycondi-
tions(NRBC) areconstructedsoasto allow fluxesfrom
the interior domainto a boundary

� � smoothlyexit to
the exterior of the domain. Thereare variousvariants
of the non-reflectingboundaryconditionandin general
they haveprovento bewell suitedfor aeroacousticprob-
lems[5-7]. Thefollowing aretheonesemployedin this
paper.

For a grid node =b­ � «�D lying at the outerradiusof the
domainthenon-reflectiveboundarycondition(typeI) re-
quiresthat = 	 � D ¤¦ � = 	 � D ¤¦ � � �
while

	 ¤¦ is keptfixedattheinitially givensteadybound-
ary value. At the downstreamboundary, where there
aresubstantialgradientsin theradialdirection,thenon-
reflectiveboundarycondition(typeII) requiresthat= 	¬� D ¤¦ � � �
while

	 ¤¦ and = 	¬� D ¤¦ arenow definedby simpleextrap-
olationfrom thenearestinteriornode­ ¨ , i.e.,	 ¤¦ �c	 ¤ ¹ '£ÀG)¦£Ð = 	 � D�¤¦ � = 	 � D ¤ ¹ '£ÀG)¦£Ð J
As will be observed later, these NRBCs are robust
enoughto allow a nearfield computationwithout dis-
turbingor distortingtheflow andacousticfields.

4 Results
Thecalculationswerecarriedout until a ‘limit cycle’

oscillation in the flow field was reached. At this state
the flow propertyat a given point in the computational
domainwould undergo a quasi-periodicoscillationwith
varying time. The pressureoscillationat a given point
in thecomputationaldomainfor the ��Í =1.694(10 psig)
caseis shown in figure 4. The underlyingperiodicity
in the time history shouldbe apparentuponan inspec-
tion. The power spectrumcorrespondingto the dataof
figure4, shown in figure5, illustratestheperiodicityun-
ambiguously. Thespectrumis clearlycharacterizedby a
peakatafrequency of about2600Hz. A largenumberof
timesteps(410,000to 740,000)hadto berun in orderto
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Figure4: Time history of pressurefluctuationat x/L =
0.667,y/L = 2.66.

achieve appropriateresolutionon thelow frequency end
of thespectrum.

Also shown in figure5 is thepower spectrumdensity
(PSD)calculatedat approximatelythesamelocationus-
ing a coarsergrid (80,000cells). The amplitudeof the
peakis somewhat different from that for the fine grid.
This is not unexpectedsincethephenomenonis not ex-
actly periodicandthephysicallocationsarenot exactly
the same.However, it is clearthat the frequency of the
peakis thesame.Thus,thefine grid resolution(114,000
cells)maybeconsideredadequate.

Theoscillationcouldbedetectedbasicallyeverywhere
in thecomputationaldomain(althoughin regionscorre-
spondingto ‘nodes’thepressureoscillationmightnotbe
clear).Thep’-spectrumobtainedfrom dataatadifferent
pointisshownin figure6,asanotherexample.Exceptfor
somedifferencein thehigherfrequency peakstheover-
all spectrumandthedominantpeakremainsunchanged.
Note that thedatain figure5 representnear-field acous-
tic pressure(outsidethenozzle)whereasthosein figure6
representpressureoscillationwithin thecoreof theflow.
Theflow oscillationfrequenciesaredeterminedin asim-
ilar mannerthroughspectralanalysisfor all five oper-
ating pressures.Thesefrequenciesare comparedwith
experimentaldatain figure7.

Here, let us first briefly summarizethe experimental
results(Zamanet al. [1]). The frequency datawereob-
tainedby spectralanalysisof a microphonesignal. The
data include ‘screech’ tonesas well as the ‘transonic
tones’,asmarked in the figure. The latter phenomenon
is the subjectunderconsideration.Note that thereis a
stagingbehavior with the transonictones. Two stages,
marked in the figure, are detectedwith the nozzleun-
derconsideration.Fromananalysisof datafrom a large
numberof nozzles,it was inferredthat stage(1) repre-

Figure5: Power spectraldensityof fluctuatingpressure
at x/L = 0.667,y/L = 2.66.Solid line: finegrid (114,000
cells),dottedline: coarsegrid (80000cells).

Figure6: Power spectraldensityof fluctuatingpressure
within theconvergentsectionatx/L = -0.667,y/L = 0.20.
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symbols: experimentaldata(for nozzle3T2; Zamanet
al. [1]), Solidsymbols:presentnumericalresults.

sentedthe fundamentalin the resonancewhile stage(2)
representedthe next odd (3rd) harmonic. It was found
thatthepresenceof a shockwithin theupstreamreaches
of thedivergentsectionwasanecessaryconditionfor the
resonanceto takeplace.A physicalmodelfor theunder-
lying mechanismwasproposed.In short, the unsteady
shockwasthoughtto act like a vibratingdiaphragmand
resonancetook placein a mannersimilar to that occur-
ring in thesimple(no-flow) acousticresonanceof acon-
ical sectionwith oneendopenandtheotherendclosed.
Thus, the fundamentalwas expectedto involve a one-
quarter(wavelength)standingwave within the diverg-
ing sectionwhile thenext (third) harmonic(stage2) was
expectedto involve a three-quarterstandingwave. Un-
steadyflow measurementsdid indicatethe presenceof
such standingwaves. However, the latter observation
was not on firm ground becauseof the possibility of
probeinterferenceeffects.

In figure7, thenumericalresultsfor the resonantfre-
quenciesare shown by the solid symbols. The results
agreewith theexperimentaldataverywell. Not only the
trendof frequency variationwithin eachstage,and the
stagejump,arecapturedbut alsothefrequenciesarepre-
dictedquitewell.

Detailsof theflow field werecomputedfor two pres-
sures,� Í =1.278and1.694,correspondingto stage(2)
andstage(1) resonance,respectively. Thestaticpressure
distributionsareshown in figure 8 for the fundamental
caseat � Í =1.694. The 11 framesspanapproximately
2T, T beingthe periodof the oscillation. Thus,approx-
imately on the 6th framethe periodis completedanda
similar distribution is expectedasin the1st frame. This

1
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7

8

9

10

11

Figure8: Detailedflow-field pressuredatafor thefunda-
mentalcaseat 10 psig(stage1).

is indeedthe caseascanbe seen.NumericalSchlieren
pictures(i.e., distributionsof ÒEÓÒ � ), correspondingto the
instantsof figure 8, areshown in figure 9. Theseillus-
tratetheunsteadyshockstructureandits motion within
the period. A shock(denotedby the boundarybetween
the yellow/redandblue/greenregions)canbe seenpast
the throatof the nozzle. The shapeandstructureof the
shockchangeswidely overtheperiod.Duringpartof the
cycle, a clear ‘bow-shaped’front is seen(frames1,6).
During otherpartsof thecycle a ‘lambda-shock’is seen
clearly (frame2,7). Yet during otherpartsof the cycle,
multiple frontsarenoted.Correspondingdistributionsof
theaxialvelocity(U) areshown in figure10. A flow sep-
arationdownstreamof thethroatof thenozzlecanbeob-
served. Thelengthof theseparatedflow region changes
over theperiod.

Flow field detailsfor the �°Í = 1.278(stage2) caseare
shown in figures11-13,in a similar mannerasin figures
8-10.Here,anapproximaterepetitionof theflow pattern
everysixthframecanalsobeobserved.However, it isnot
asclearasin thecaseof thefundamental.In any case,the
completionof the periodcan be inferred, for example,
by following theyellow patchof high-pressureregion to
the right of the nozzleexit in figure 11. It propagates
downstreamwith increasingtime step,until in the sixth
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Figure9: DetailednumericalSchlierendatafor thefun-
damentalcaseat10 psig(stage1).
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Figure10: Detailedflow-fieldu-velocitydatafor thefun-
damentalcaseat10 psig(stage1).
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Figure11: Detailedflow-field pressuredatafor thecase
at 4 psig(stage2).

framea patternsimilar to thatin frame1 reappears.

Referring back to the Schlierenpicturesfor the �°Í
=1.694case,aqualitatively similarshockmotionmaybe
notedin pastexperimentalinvestigations.TheSchlieren
picturesin figure 14 are from the experimentof C.A.
Hunter of NASA Langley ResearchCenter for a 2-D
convergent-divergentnozzle(seeHunter1998[10], and
Zamanet al. [1] for furtherdetails).Comparefor exam-
ple, thepicturesin figures14(a),(b) and(c) with frames
1, 2 and4 of figure9.

Ther.m.s. pressurefluctuationamplitudeswerecom-
putedfrom thedataon thecenterlineof thenozzle.The
resultsareshown in figures15(a)and(b) for the cases
of the3rdharmonic(stage2) andfundamental(stage1),
respectively. Thethroatis locatedatanabscissavalueof
0 while the nozzleexit is at 1. First, in figure 15(b), it
canbenotedthatthereis a pressureanti-nodesomewhat
downstreamof the throatwhile a nodeexistssomewhat
downstreamof the exit. This clearly indicatesthe pres-
enceof aone-quarterstandingwavewithin thedivergent
section. Similarly, a three-quarterstandingwave is ob-
served for stage(2) in figure 15(a). The resultsof fig-
ure15 agreewith andconfirmthepresenceof thestand-
ing wavesthatwereconjecturedfrom experimentalevi-
dence,asdiscussedearlier.

8
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Figure12: DetailednumericalSchlierendatafor thecase
at 4 psig(stage2).
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Figure13: Detailedflow-fieldu-velocitydatafor thecase
at 4 psig(stage2).

Figure14: Schlierenpicturesof theinternalshockstruc-
turefor fundamentalresonanceatMj = 0.71for arectan-
gularnozzle,from theexperimentof Hunter[10].

A recentexperimentalinvestigationin connectionwith
flow meteringusingVenturi nozzles[11] is worth men-
tioning here. In this work, flow unsteadinesswas ob-
served at relatively low pressure-ratios.Time-averaged
dataon‘recoverytemperature’clearlyexhibitedthepres-
enceof one-quarter, three-quarterandeven five-quarter
standingwaveswithin the divergentsection.(In private
communication,the first authorof [11] confirmedthat
the flows wereaccompaniedby emissionof tones. Un-
fortunately, frequencieswere not measuredthat would
have allowed a comparisonwith the correlationequa-
tions of Ref. 1 anda determinationif the unsteadiness
wasindeedthesamephenomenonasstudiedhere.)

In figure16,thepressureamplitudesareshown for the
fundamentalcaseat a giveninstant.Theacousticradia-
tion patternat theresonancefrequency is capturedin this
plot. It is noteworthy that the patternis similar to that
observedwith ductacousticresonance.For example,in
thework of [12] thepressurefluctuationsfor aresonating
cylindrical ductwerecalculated.While theinternalpres-
sureamplitudesapparentlyshowedstandingwaves(their
Fig. 13), theexternalradiationpatternappearedsimilar
to thatobservedhere.

Finally, theeffectof Reynoldsnumberis examinedon
the resonancefrequency. In the experimentsthe reso-
nancetendedto disappearwith increasingpressurera-
tio (or Ñ ¦ ). Thus, the highestpressure-ratio( 20 psig
case)was chosenfor this Reynolds numbersensitivity
study. Computationswereperformedfor threeadditional
Reynolds numbers,calculatedon the basisof acoustic
speedin the ambientanda length-scaleof 1 inch. The
solid curve, representing‘high Re’ calculationwasob-
tainedin the sameway as describedabove (by settingm

to zero;seeSection3). This involvedboundarylayer
9
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with growth only dueto ‘numericalviscosity’. Thelatter
dependson grid sizeandotherparametersof the com-
putationalprocedure.An estimateof thenumericalvis-
cosityis notstraightforward,however, thecorresponding
Reynoldsnumberis thoughtto bequitehigh. Thelower
Reynoldsnumbercaseswereobtainedby settingcorre-
spondinglyhigher valuesof

m
. Note that the nominal

Reynoldsnumberbasedon molecularviscosityis about
600,000.

Thepowerspectraldensityof thefluctuatingpressure
is shown in Fig. 17. For brevity, thesecalculationswere
performedonly for limited lengthsof time so that the
resolutionin Fig. 17 is not asrefinedasin Figs. 5 and
6. The ordinatein Fig. 17 hasa log scaleandthusthe
higherharmonicsappearprominently. It is clearthat the
resonancepersistsover a wide rangeof Reynoldsnum-
bersandfor high andmoderateRe’s, their effect on the
resonancefrequency is quite small (about H:Ô at maxi-
mum). Only at the lowestRe theoscillationdisappears.
Note that a deceasingRe is equivalent to a thickening
of the boundarylayer. The trendis thereforeconsistent
with experimentalobservationthattheresonanceis sup-
pressedupontripping of the boundarylayer. However,
the exact mechanismof the tripping effect remainsun-
clear [1] and further study, including computational,is
neededto obtaina full understanding.

5 Discussion and Summar y
It is important to discusscertainpastwork that ad-

dressedthesameor similarunsteadyphenomenon.In the
work reportedin [13], a simulationof the experiments
of [14] wasperformed.The experiment[14] reporteda
periodicunsteadyflow througha two-dimensional‘tran-
sonicdiffuser’. Thefloor of thediffuserwasflat, thetwo
side-wallswereparallelandthetopwall wasconvergent-
divergent. An examinationof the frequency datafrom
this experiment(seeRef. [1] for full discussion),led
to the inferencethat the observed unsteadinessmust
be of samemorphologyasof the subjectphenomenon.
Of relevancehere is the fact that the numericalsimu-
lation of [13] appearedto have capturedthe flow un-
steadinessquite well. A two-dimensional,compress-
ible, Reynolds-averagedNavier-Stokes (RANS) solver
wasusedtogetherwith atwo-equationturbulencemodel.
The computationwasstartedwith an initial statedeter-
minedfrom quasi-one-dimensionalanalysis.After suffi-
cient time stepsthe flow settledinto an oscillatorypat-
tern. The period of oscillation for someof the cases
agreedwell with thedataof [14]. However, it wasfound
that the diffuserflow field and the frquency were very
sensitive to thelocationof thedownstreamboundary.

Anothernumericalwork [15] broughtto the authors’
attentionalsomerit a discussion.This work concerned
flow meteringusingVenturi nozzles. Numericalsimu-

Figure15: Time-averaged(r.m.s.) amplitudeof fluctu-
atingpressurealongcenterlineof nozzle;(a) �°Í = 1.278
case(stage2); (b) ��Í = 1.694case(stage1).
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lation was conductedfor flows similar to that of [11],
discussedin connectionwith Fig. 15. An axisymmetric,
unsteady, compressibleNavier-Stokessolver wasused.
For certainconditions,a quasi-periodicfluctuationwas
observedin thecomputedflow field. Fromthedatapro-
vided in [15] it wasnot possibleto determineif thefre-
quenciesfollowedthecorrelationequationsof [1]. How-
ever, the symptomsappearedsimilar and the unsteadi-
nessseemedlikely to be of the sameorigin asthe tran-
sonicresonance.

Thus, to the authors’ knowledge, at least two past
numericalworks also likely capturedthe transonicres-
onancephenomenon. The apparentability to capture
the phenomenonby ‘any’ unsteadycode is surprising
becauseexperimentally it is known to be very sensi-
tive to operatingconditionsespeciallyto perturbations
in the upstreamboundarylayer (seediscussionof Fig.
17). Exceptfor the similarity that all threesimulations
(present,[13] and [15]) involved axisymmetricor two-
dimensionalcodes,differentalgorithmsandprocedures
were followed. The upstreamboundarylayer in the
presentsimulationwas‘laminar’, thatin [13] wasappar-
ently turbulent.Wemoveonby notingthatmany aspects
of the phenomenon,e.g., the effect of boundarylayer
tripping,haveremainedfar from completelyunderstood.
Furthernumericalstudyhasthepromiseof advancingthe
understanding,andthis is plannedfor thefuture.Follow-
ing is a summaryof theresultspresentedin this paper.

TheunstructuredCE/SENavier-Stokes/Eulersolver is
applied to the transonicresonancephenomenon. It is
clearthat theessenceof thephenomenonis capturedby
the computation. The frequency of the resonanceand
its variationwith pressure-ratio,includinga stagejump,
arecapturedquitewell. A significantcontributionof the
presentstudy is the resultsclearly showing the charac-
teristic standingwaves (Fig. 15). This confirmedthat
the underlyingmechanismis similar to that of acoustic
(no-flow) resonanceof a duct having oneendopenand
theotherclosed.This wasconjecturedin theearlierex-
perimentalwork [1] but thestandingwavescouldnot be
measuredwith confidencebecauseof probeinterference.

Thesuccessin capturingthecharacteristicsof thephe-
nomenonatteststo thevalidity of thenumericalscheme.
Otheradvantagesof the CE/SEschemeincludethe ‘ef-
fortless’ implementation(no specialtreatment,grid re-
finement,etc.), the simple but effective NRBC and its
shock-capturingcapability.

As statedin Section3, mostof theresultsin thispaper
wereobtainedby ‘inviscid’ calculationsfor the internal
flow. It can be viewed as a Navier-Stokes solution at
a high Reynoldsnumberwith under-resolvedboundary
layer; thecomputedflow involveda boundarylayerdue
to numericalviscosityonly. Boundarylayer separation
following theshockcanbeobservedin figures10and13.

Figure16: Acousticradiationfor the fundamentalcase.
(10psig)

However, onemaynot expectthat thedetailsof thesep-
aratedflow andtheseparationbubblewould becaptured
faithfully by sucha procedure.On theotherhand,users
of theCE/SEmethodhavedemonstratedits capabilityto
captureshockstructurerelatively faithfully. Thus,one
may infer that the shockand its unsteadiness,possibly
dueto flow separation,aretheprimaryingredientsof the
transonicresonancephenomenonandthat the exact de-
tails of the separatedboundarylayer arehererelatively
unimportant.
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